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Abstract

Non-ordinary state-based peridynamic correspondence material model is known to have issues with material instability, i.e. the existence of 
zero-energy modes, due to non-unique mapping between deformation states and force states via the conventional peridynamic deformation
gradient. In this paper, an alternative approach in which the deformation gradient hence force state are computed specifically for each 
individual bond is proposed to eliminate the material instability. Bond-associated deformation gradient is calculated based on deformation 
states of material points within an individual bond’s proximity, termed here as the bond-associated family, rather than a material point’s whole 
family. This bond-associated deformation gradient can better represent the force state of each individual bond from the deformation states of 
material points in its proximity, and hence inherently resolves issues of material instability in the conventional correspondence material model.
Parametric study on bond-associated horizon size indicates that the optimal size should be no less than the material point’s horizon size but 
smaller than two times of that value. Comparisons against reference solutions using finite element method establish the validity and accuracy of
the proposed formulation.
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1. Introduction

Among peridynamic models [1], the correspondence model
[2] is very useful in that it allows the direct use of classical 
continuum material constitutive models within peridynamic 
theory. Continuum material models are naturally incorporated 
into the peridynamic framework via the counterpart measures, 
such as deformation gradient and first Piola-Kirchhoff stress 
tensor. However, the correspondence model suffers from 
some practical difficulties, such as non-invertibility [3]. This 
non-invertibility is a manifestation of material instability 
rather than merely an artifact of meshless discretization. It can 
be understood as existence of many possible deformations of 
a family that result in the same force state. As a consequence,
there could be many possible deformation states of the entire 
body for a given loading. This has the practical effect of 
introducing zero-energy deformation modes to the model that 
need to be suppressed. Various remedies for zero-energy 
mode control are available in the literature, such as fictitious 
spring-force based methods [4], [5] and stabilized field state
based methods [6], [7], [8], [3]. Although can be used to 
alleviate instabilities arising from zero-energy modes, these 
methods have their own issues and limitations, such as tedious 
parameter tuning and problematic stress oscillation. Most 
importantly, these methods do not provide resolution to the 
fundamental problem in the correspondence formulation 
leading to these zero-energy modes.

To fully take advantage of correspondence model in direct 
incorporation of continuum material constitutive relationships 
for nonlinear deformation and fracture modeling, there is still 
a strong need for effective zero-energy control schemes to be 
developed. In this paper, bond-associated deformation 
gradients are proposed to stabilize the conventional
correspondence formulation to inherently resolve its material 
instability issue. This paper is organized as follows: Section 2 
gives details on various deformation gradient definitions in 
both continuum theory and peridynamic theory. Following 
this, derivation of force state based on the proposed bond-
associated deformation gradient is presented in Section 3. In 
Section 4, parametric study to obtain optimal bond-associated 
horizon size is performed. Discussions and conclusions are 
drawn in Section 5.

2. Deformation gradient

2.1. Deformation gradient in continuum mechanics

The deformation gradient is the fundamental measure of 
deformation in continuum mechanics. It maps line segments 
in the reference configuration into line segments (consisting 
of the same material points) in the current configuration.

Fig. 1. Deformation of a continuum body

Consider a line segment dX emanating from position X

in the reference configuration r
 which deforms to dx in 

the current configuration c
 , see Fig. 1. Thus, the line 

segment in the deformed configuration c
 is given by

   d d   x X X X (1)

A Taylor expansion of  d X X gives

       d d O d


 


    


X X X X X X
X

(2)

where  O dX indicates higher-order terms of dX .

Substituting Eqn. (2) into Eqn. (1) and assuming that dX

is a infinitesimally small gives

   d d d


   


x X X F X X
X

(3)

Eqn. (3) tends to exact as the differential dX goes to zero.
The deformation gradient thus characterizes the 

deformation in the neighborhood of material point X , 
mapping infinitesimal line segment dX emanating from X
in the reference configuration to the infinitesimal line segment
dx emanating from x in the deformed configuration.

2.2. Conventional peridynamic deformation gradient

Before formulating the peridynamic deformation gradient, 
some useful states represented in Fig. 2 are discussed below:



Fig. 2. Schematic illustrating different states in peridynamics

The relative position vector state of two material points in
reference configuration r

 :

  X ξ ξ X X (4)

where the angle bracket notation indicates that the state is 
associated with bond ξ .

The relative displacement vector state of two material points:

     , , ,t t t  U X ξ η u X u X (5)

where the square bracket notation has similar meaning to 
standard parentheses, indicating dependence on quantities, but 
is used for peridynamic states.
The relative position vector state or deformation state of two 
material points in the current configuration c

 :

     , , ,t t t   Y X ξ ξ η y X y X (6)

A finite distance that defines interactions between material 

points is called horizon. H
X denotes the horizon at material 

point X with radius  . For regular spatial discretization, the 
horizon size  is usually represented in terms of mesh 
spacing x using a spacing factor m as

m x    (7)

For a bond ξ , there exists infinitely many mappings that 
transform the relative position vector state X ξ in the 
reference configuration to the relative position vector state
Y ξ in the current configuration. A possible transformation 
can be written as:

 
ξ

Y ξ F X ξ (8)

where ξ
F is the deformation gradient for bond ξ connecting 

material point X and its neighboring material point X . Here, 
Eqn. (8) defines the operation of a peridynamic deformation
gradient in a manner analogous to the continuum deformation 
gradient in that it maps a vector state in the reference 

configuration to a vector state in the current configuration. ξ
F

becomes the deformation gradient at material point X when 

bond ξ tends to an infinitesimal length.

Fig. 3. Configuration for conventional peridynamic 
deformation gradient

Writing Eqn. (8) for material point X and each of the 
bonds connecting it with its neighbors leads to a system of 
over-constrained linear equations that cannot generally 

satisfied by a single mapping ξ
F . See Fig. 3 for reference. For 

this reason, a technique to compute an optimal deformation 
gradient F is sought. Techniques similar to those discussed 
here have been used in molecular dynamics simulations [9]
[10].
The mapping error between material point X and a single 
neighbor X as the 

2
 norm of the difference between the

Y ξ and X ξ :

   T

     
X

Y ξ F X ξ Y ξ F X ξ (9)

Thus, the weighted least squares error among the neighbors of 
X can be given by

   T

H
dV     

X

X
ξ Y ξ F X ξ Y ξ F X ξ (10)

where  ξ is a nonnegative weight factor for bond ξ .
In Eqn. (10), the volume integral has been used to arrive at 

a weighted least squares error. This is consistent with the 
volume integral in the governing equation shown in Eqn. (30)
for force density.

The optimal local deformation gradient F , in a weighted 
least squares sense, is obtained by minimizing  in Eqn. (10)
with respect to the components of F as

 2 2
H

dV 


     




X

X
ξ Y ξ X ξ F X ξ X ξ

F



(11)
Setting Eqn. (11) equal to zero yields the local deformation 

gradient in the weighted least squares sense as
1

c r


 F K K (12)

where

r H
dV  

X

X
K ξ X ξ X ξ (13)

and 



c H
dV  

X

X
K ξ Y ξ X ξ (14)

For Eqns. (12) - (14) to be valid, a few necessary 
conditions must be satisfied in cases of three-dimensional 
analysis. First, for r

K to be invertible, a material point’s
neighbors should not be coplanar. Second, since the 
deformation gradient has nine independent components, a 
material point must have at least three neighbors. And similar 
constraints apply to two-dimensional cases. Given all these 
conditions, the term in Eqn. (13) can be proven to be 
symmetric positive-definite (refer to Lemma 3.1 in [2]).

It should be noted that the above derived deformation 
gradient for peridynamics is different from its continuum 
mechanics counterpart in that it doesn’t require smooth 
motion of a continuous region in space and it is not a 
continuous function of spatial position, but instead is defined 
only at material point locations. The compatibility condition, 
i.e., that the curl of the deformation gradient is zero, is usually 
not satisfied by the deformation gradient in peridynamics.

In the work by Silling et al. [2], the term defined in Eqn. 
(13) is called the shape tensor and denoted as K . The 
notation from Ref. [2] for the shape tensor is adopted in the 
following discussion.

2.3 Proposed bond-associated deformation gradient

As discussed in the Introduction, the existence of zero-
energy modes in correspondence model is rooted in the 
approximation of the nodal deformation gradient. Thus, one 
possible way to remove zero-energy modes at their source is 
to redefine the nodal deformation gradient such that there is a 
unique mapping between the deformation gradient and the 
underlying deformation states.

Based on how the conventional peridynamic deformation 
gradient is constructed in Section 2.2, it’s obvious that an 
optimal peridynamic deformation gradient at a material point 
cannot accurately reflect the deformation of every bond 
associated with that material point. As a consequence, the 
force state calculated from this deformation gradient differs 
from the actual force state of each individual bond. This can 
sometimes lead to severe unphysical issues in peridynamic 
modeling, such as sub-horizon material collapse and material 
penetration [7]. The use of a bond-associated deformation 
gradient, defined below, is proposed to remedy these 
unphysical issues inherent in the conventional correspondence
model.

According to Eqn. (8), the deformation gradient ξ
F can 

accurately capture the deformation of bond ξ . However, 

forming this full deformation gradient is problematic because 
it has more components than there are constraints in a bond. 
In the case of three dimensions, there are nine independent 

components for the deformation gradient ξ
F , and only three 

independent constraints are available based on the reference 
and current configurations of bond ξ . One possible way to 

introduce more constraints but not change the solution such 
that mapped deformation of bond ξ differs significantly from 

the actual solution is to also use the deformation state of 
neighboring bonds. It is proposed that this be done by using 

an additional local bond-associated horizon h X
defined at 

material point X as shown in Fig. 4. The set of material 
points within this horizon that are neighbors of material point 
X is used to approximate a bond-associated deformation 
gradient for bond ξ at material point X . The same 

methodology can be applied while calculating the bond-
associated deformation gradient for bond ξ at material point 

X . This approximated bond-associated deformation gradient 
is more optimal for bond deformation mapping compared to 
the nodal deformation gradient, since only the deformation 
states adjacent to this bond is used in the approximation 
process and the force state calculation.

The same necessary conditions listed in Section 2.2 for the 
approximation of the conventional peridynamic deformation 
gradient and shape tensor apply to the bond-associated 
deformation gradient and shape tensor will be derived in this 
section.

Fig. 4. Configuration for bond-associated deformation 
gradient

Following the same definition of conventional peridynamic
deformation gradient in Eqn. (12) but using a different domain 

H h 
X X

rather than H
X

for its weighted least squares 

approximation, the bond-associated deformation gradient for 
bond ξ at material point X can be readily obtained as

  1

H h
dV








  
X X

ξ X ξ
F ζ Y ζ X ζ K (15)

with the bond-associated shape tensor as

H h
dV






 
X X

ξ X
K ζ X ζ X ζ (16)

The nodal deformation gradient can be calculated as a 
weighted average of the bond-associated deformation 
gradients in Eqn. (15) for each individual bond,

1

1

n

NP

n

n

NP

n

n

w

w











ξ
ξ F

F

ξ

(17)



where NP is the number of neighboring material points in a 
material points family, and the weight function 

n
w ξ

determines the contribution of each individual bond-
associated deformation gradient to the deformation gradient at 
a material point.

It is noteworthy that the derived bond-associated 
deformation gradient for each individual bond becomes exact 
as the nodal deformation gradient when the bond approaches 
an infinitesimal length. This can be concluded from the 
definition of the continuous deformation gradient outlined in 
Section 2.1. In addition, for homogeneously applied 
deformation

0
F , this bond-associated deformation gradient is 

exactly the same as the applied deformation gradient as

 
0

1

0

0

1

  

  

n

H h

H h

n nn n n

n n n

dV

dV


















   

   







X X

X X

X

X ξ

ξ ξF ξ F X ξ X ξ K

F ξ X ξ X ξ K

F

(18)

The bond-associated deformation gradient shown in Eqn. (17)
aims to represents the deformation of each individual bond 
more accurately. This shares some similarities with the 
stabilization scheme recently proposed by Silling in Ref. [3].

3. Force state in bond-associated correspondence 
formulation

From the derivation of force state in correspondence model 
outlined in Ref. [2], it is clear that calculation of force state is 
completely dependent on the formation of deformation 
gradient. Differing definitions of deformation gradient will 
result in differing force states. Based on the proposed bond-
associated deformation gradient concept, two options are 
possible to formulate corresponding force state. The first 
option is to derive the force state based on the nodal 
deformation gradient as is done in the classical peridynamic 
correspondence material model, but using the nodal 
deformation gradient approximated in Eqn. (17) from the 
bond-associated deformation gradient. A second option is to 
derive bond-associated force state based on each individual 
bond-associated deformation gradient. This will results in a 
set of strain energy densities at each material point, with 
unique values corresponding to a material point’s individual 
neighbors, i.e., bonds connected at this materials point. This 
requires modification of the strain energy density definition.

In this work, focus is placed on the latter option because its 
implementation is much simpler. For this case, the 
corresponding force state can be derived following the 
procedure outlined in Ref. [2]. Here, focus will be placed on 
the modification of the strain energy density definition from 
material point to each individual bond connected at that 
material point. Details on the derivation of force state from 
deformation gradient can be found in Ref. [2].

At a material point, the bond-associated strain energy 

density function change  W



Y ξ

Y due to an increment Y

within its proximity can be determined as

   
H h

W dV


 
   

X X

Y ξ ξ X
Y T Y Y (19)

where  
ξ

T Y is the bond-associated force state.

On the other hand, the incremental change  W



Y ξ

Y at a 

material point due to an incremental change in deformation 
state Y within a bond’s proximity can also be determined as

 
 

 
 :

W
W

 


  



ξ

Y ξ Y ξ

ξ

Y
Y F Y

F Y
(20)

The incremental change in the bond-associated 

deformation gradient 


Y ξ
F is evaluated as

     

  1

1

1

           

           

             

H h

H h

H h

dV

dV

dV



























    

    

  

   







X X

X X

X X

Y ξ ξ ξ

ξ ξ

ξ ξ

ξ ξ

F Y F Y Y F Y

ξ Y Y X K

ξ Y X K

ξ Y X K

(21)

The bond-associated first Piola-Kirchhoff stress tensor is

 

 

W



ξ

ξ

ξ

Y
P

F Y
(22)

From Eqns. (20)-(22), the incremental change  W



Y ξ

Y

at a material point for an associated bond can be rewritten as

  1

H h
W dV





 
     

X X

Y ξ ξ ξ ξ
Y ξ P K X Y (23)

Comparing Eqn. (19) with Eqn. (23), the bond-associated 

force state  , t
ξ

T X ξ can be obtained as

  1
, t 


  

ξ ξ ξ
T X ξ ξ P K X (24)

Since the conventional correspondence formulation is 
based on a material point and its horizon and only a fraction 
of a material point and its horizon is used in the proposed 
bond-associated formulation, a correction is required in order 
to accurately represent the strain energy density at a material 
point from the bond-associated strain energy density at the 
same material point. This will eventually results in a 
correction factor for the force stated derived in Eqn. (24). A 
good approximation of the bond-associated strain energy 
density from the nodal strain energy density based on the 
volume fraction is

   
np NP np np

W f W f
 

  
ξ

Y Y (25)

with the volume fraction 
np NP

f


being the ratio of the total 

volume for all bond-associated deformation gradients at a 
material point with respect to that of the classical deformation 
gradient calculation:

1

1

1

n

NP

H h
n

np NP

H

dV

f
dV
















X X

X

X

X

(26)

and the volume fraction
np np

f


being the ratio of the volume 

used in an individual bond-associated deformation gradient 
calculation to the total volume for all bond-associated 
deformation gradients at a material point:



1

1

1
n

H h

np np NP

H h
n

dV

f

dV














 

X Xξ

X X

X

X

(27)

In above Eqns. (25)-(27), np is the number of neighboring 

material points in a bond’s proximity, i.e., bond-associated 
horizon.

Substituting Eqns. (26) and (27) into Eqn. (25), a 
simplified approximation can be obtained as

   
1

1

H h

H

dV

W W
dV






 



X Xξ

X

X

ξ

X

Y Y (28)

Thus, the force state for each individual bond in the proposed 
bond-associated correspondence formulation becomes

  1

1

,
1

H h

H

dV

t
dV









  



X Xξ

X

X

ξ ξ

X

T X ξ ξ P K X (29)

In the conventional formulation of deformation gradient 
(Eqn. (12)), a variation of the deformation state of any 
material points within the family will result in a change to the 
deformation gradient hence the force state of all bonds 
connected at the that material point. In the proposed bond-
associated formulations, however, a variation in the 
deformation state of a material point within a bond’s 
proximity will only affect the force state of adjacent bonds 
whose associated deformation gradient depends on that 
variation. This effectively reduces the non-locality of the 
classical correspondence formulation but more accurately 
represents the force state for each individual bond.

With the derived force state in Eqn. (29), the motion of a 
material point X in the reference configuration at time t is 
governed by

         

   

, , , ,

, 0,

H

r

t t t dV t

t T

 
   

  


X

X
X u X T X ξ T X ξ b X

X



(30)
where   X is mass density,  , tu X is the displacement
vector,  , tT X is the force vector state that material point 
X exerts on material point X , and  , tT X is the force 

vector state that material point X exerts on material point X ,
and  , tb X is external force density vector.

It’s noteworthy that the proposed correspondence material 
model has the same properties, such as objectivity and balance 
of angular momentum, as conventional model since it
recovers the conventional model when the size of bond-
associated horizon greater than two times of the material 
point’s horizon. See Fig. 5 for the case when 6.0m  . The 
difference between the proposed model and conventional 
model lies in which neighbors are used in the force state 
calculation for each individual bond.

4. Parametric study

4.1. Selection of bond-associated horizon size

The size of the bond-associated horizon h X
can be 

represented similarly to H
X

in Eqn. (7), in terms of the mesh 

spacing x and a spacing factor m for the bond-associated 
deformation gradient

m x     (31)

Changing m results in a different configuration for the 
calculation of the bond-associated deformation gradient.

To illustrate the effect of the choice of m on the set of points 
involved in the bond-associated gradient calculation, a set of 

two-dimensional configurations with varying values of m

using regular spatial discretization are shown in Fig. 5. The 
classical correspondence configuration for deformation 

gradient is recovered for cases in which 2m m  , as 

illustrated for the 6.0m  case. Further increasing m

beyond 2m clearly has no effect on the model.
It should be noted that for the bond-associated shape tensor 

and deformation gradient to be invertible, i.e., nonsingular, 
there must be at least two non-collinear bonds involved in the 
bond-associated gradient calculation. To satisfy this condition, 

the minimum value for m is 2 for a regular grid. As can 

be seen from Fig. 5, the case of 1.0m  violates this 
condition. In that case, there are two bonds:  one between 

point X (red) and material point X (green), and one 
between point X and the one point shown in blue. Those two 
bonds are collinear, which results in a singular shape tensor 
and deformation gradient.

          1.0m                    1.5m                   2.0m 

          4.0m                    5.0m                 6.0m 

Fig. 5. Schematic diagrams of 2D configurations with 
constant horizon 3m  , but varying m . Blue points are those 
used in the bond-associated deformation gradient calculation 
at material points X (red) for bond connecting with X
(green).

4. Numerical results

The proposed correspondence formulation was implemented 
based on the Multi-physics Object-Oriented Simulation 
Environment (MOOSE) framework [11] at Idaho National 
Laboratory. Some implicit formulation for peridynamic and 
other nonlocal discrete models can be found at [12] and [13]. 
Using this MOOSE-based implicit implementation, a 
parametric study on the effect of the size of bond-associated
horizon is performed on a two-dimensional plate containing a 
center crack. A schematic showing the geometry and loading 
of the plate is given in Fig. 6. Pre-existing sharp cracks are 



represented by removing connecting bonds between material 
points on each side of the crack surfaces. Boundary conditions 
are applied to only the first layers of material points adjacent 
to the edge of the model. The material properties are: Young’s 
modulus 210 E GPa and Poisson’s ratio 0.3v  .

The mesh spacing used in this case is 0.25x  mm, 
which results in a total of 64,000 material points, and 40 
material points on the crack surface. In this study, the standard 
peridynamic horizon is kept fixed with horizon spacing factor 

3.0m  . Systematic comparisons on a number of different 
measures between different bond-associated configurations 

are performed. Comparison results for various values of m

under uniform normal traction of 109 N/m2 force boundary 
condition are presented in Fig. 7. It is useful to refer to Fig. 5, 

which shows the effect of m on the bond-associated 
deformation gradient calculation for many of the scenarios 

considered here. Note that the largest value of m considered 
here is 5.0, because setting it to 6.0 or larger recovers the 
behavior of the classical correspondence model, which 
requires stabilization to yield reasonable results. A prediction 
comparison between the conventional model and proposed 
model is shown in Fig. 8 in terms of measures used in Fig. 7.

Fig. 6. Schematic showing geometry and configuration of a 
two-dimensional plate with pre-existing sharp crack

As can be seen from Fig. 7, all five peridynamic models
produce smooth results except the case of 1.5m  , which
exhibits severe oscillation at the crack surfaces. This is due to 
the fact that a small bond-associated horizon size causes large 
fluctuations between approximated bond-associated state 
quantities for adjacent bonds. It also notable that the cases 
with smaller bond-associated horizon sizes show greater 
differences relative to the reference finite element method
solution, but as m increases, these differences decrease. For 
the case of 5.0m  , the predictions align quite well with the 
finite element reference solution, considering the differences 
in geometrical representation of cracks between peridynamic 
models and finite element models. It’s also evident that the 
peak values of strains and stresses at crack tips from 
peridynamic solution are much lower than those of the finite 
element reference solutions due to the non-locality in 
peridynamic models. It should be noted that the mesh used for 
the finite element model comparison had the same density as 
the peridynamic discretization.

From the simulations of the center-cracked plate, it can be 
concluded that for accuracy, the bond-oriented horizon size 

h X
needs to be no less than the horizon size H

X
but smaller 

than two times of H
X

, i.e., 2m m m  .

From results shown in Fig. 8, there exists severe material 
instability, i.e., zero-energy modes, indicated as oscillation of 
the solutions in the conventional model. And the proposed 
formulation effectively removes this material instability.  

Fig. 7. Two-dimensional simulation results along a vertical 
line on the side of the crack for various bond-associated 
horizon sizes with force boundary conditions

Fig. 8. Predictions comparison between proposed model and 
conventional model



5. Discussion and conclusion

Bond-associated deformation gradients were proposed to 
remove material instability in conventional correspondence
model. A bond-associated deformation gradient is calculated 
from deformation states of materials points within each 
individual bond’s proximity. Parametric study on the local 
horizon configuration for bond-associated quantities
approximations suggested an optimal value for the bond-
associated horizon size. A bond-oriented horizon size needs to 
be no less than the horizon size of the material point but 
smaller than two times of that value. The validity and 
accuracy of the proposed formulation was established by 
comparison of prediction against reference solution using 
finite element method.

The proposed formulation inherently resolves the material 
instability issue in conventional correspondence model, and 
has advantages over other zero-energy mode control methods 
in the literature at least in the following aspects:

1). The proposed formulation doesn’t introduce any 
fictitious force states in addition to the original force states, 
which avoids utilization of zero-energy control parameters 
that must be tuned.

2). Compared to the stabilization methods introduced by 
Wu and Ren [6] and Yaghoobi and Chorzepa [8], the 
proposed formulation is shown to be far more effective at 
removing oscillations in stresses and strains near boundaries 
and at locations of local stress concentrations.

3). The proposed formulation is similar to the stabilization 
scheme recently proposed by Silling in Ref. [3], in that both 
of these methods minimize the non-uniform deformation state.
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